Blue Compact Dwarf Galaxies

100000 100000 100000 100000 100000

19-18-189-189-1

acipal facisat facisat

S Marcia Marcias Marci

acidat Marcidat Marcidat

Polychronis Papaderos Centro de Astrofísica da Universidade do Porto UCM – 5. May 2010

Centro de Astrofísica da Universidade do Porto

Extragalactic systems in the distant universe Blue, irregular sub-galactic units in the process of merging

Hierarchical growth of cosmic structures

Formation of massive systems through successive merging of smaller "building blocks"

		Universe (Gyr)	Redshift Z
$\bigvee \bigvee \bigvee \bigvee \bigvee \bigvee \bigvee \bigvee$	time	2.1	3
		3.2	2
		5.7	1
Ĩ¢	V	13.6	0

Kauffmann et al. (1993)

Compact low-mass starburst galaxies in the distant Universe

- compact narrow
 emission line galaxies –
 CNELGs
- Iuminous blue compact
 galaxies LBCGs

• diameter: 2 ... 5 kpc (Milky Way \simeq 30 kpc)

- mass: 1/10 ... 1/100 of the mass of the Milky Way
- irregular morphology
- blue colours \rightarrow intense galaxy-wide star forming activity

 $1 \text{ kpc} = 3.1 \times 10^{19} \text{ m}$

Evolution of the cosmic star formation density

- From z=1 to z=0 (today) the cosmic star formation density has decreased by an order of magnitude.
- Normal galaxies underwent the major phase of their formation several Gyr ago.
- Starburst galaxies are rare in the local volume

Starbursts are rare in the nearby universeHowever, they can be studied in spatial detail ini) interacting/merging galaxiesii) blue compact dwarf (BCD) galaxies

Dwarf Galaxies in the nearby Universe

Dwarf Galaxies dominate the galaxy population both in clusters in the field.

However the morphological distribution of dwarf galaxies depends on their environment.

 $\mathbf{I} \in \mathbf{I}$ to the dwarf galaxy population – which dominates galaxy population

■ They are the most active types of dwarf galaxies → allow to study the origin and implications of starburst activity in relatively simple systems (i.e. no density waves) with properties similar to those in distant low-masss protogalactic units

... more arguments to come ...

First spectroscopic surveys and dedicated studies

ISOLATED EXTRAGALACTIC H 11 REGIONS*

WALLACE L. W. SARGENT[†] AND LEONARD SEARLE Hale Observatories, California Institute of Technology, Carnegie Institution of Washington Received 1970 November 2

ABSTRACT

Sargent & Searle (1970)

Narrow permitted and forbidden emission lines (Extragalactic HII regions) Strongly subsolar gas-phase metallicity

Thuan & Martin (1981)

- Introduction of the term BCD
- Determination of the HI mass through \square single-dish radio observations

- **Terlevich et al. (1981):** Spectrophotometric studies Loose & Thuan (1986) O'Connell et al (1987) : Spectral synthesis models Salzer et al. (1989)
- - : Morphological classification scheme

 - : Spectroscopic classification

Spectroscopic surveys

Survey Name (1)	Type ^a (2)	Area (deg ²) (3)	Number of Objects (4)	Density (deg ⁻²) (5)	Completeness ^b Limit (m_B) (6)	Ref. (7)
Haro	С	Lots	~ 40	Small	??	1
Kiso	С	5100	8162	1.60	16.0	2
Montreal	С	4400	469	0.11	14.8	3
Markarian	UV	15000	1500	0.10	15.2	4
Tololo	L	1225	201	0.16		5
UM	L	667	349	0.52	(16.9)	6
Wasilewski	L	825	96	0.18	(15.2)	7
POX	L	82	23	0.28	(16.0)	8
ESO—Ηα	L	400	113	0.28		9
UCM	L	471	263	0.56	(~16.5)	10
Hamburg	L	1248	196	0.16		11
Marseille	L	46.5	92	1.98	(~16.0)	12
Case	UV+L	1440	1551	0.94	16.0	13
SBS	UV + L	~ 990	~ 1300	1.31	(~17.0)	14
KISS—red	L	62.2	1128	18.14	(18.1)	15
KISS—blue	L	116.6	223	1.91	(18.2)	15

^a (C) Color selected; (UV) UV-excess selected; (L) line selected.

^b Values in parentheses are median apparent magnitudes for that survey, not a completeness limit. REFERENCES.—(1) Haro 1956; (2) Takase & Miyauchi-Isobe 1983; (3) Coziol et al. 1993, 1997; (4) Markarian 1967, Markarian et al. 1981; (5) Smith 1975, Smith et al. 1976; (6) MacAlpine et al. 1977, MacAlpine & Williams 1981; (7) Wasilewski 1983; (8) Kunth, Sargent, & Kowal 1981; (9) Wamsteker et al. 1985; (10) Zamorano et al. 1994, 1996; (11) Popescu et al. 1996; (12) Surace & Comte 1998; (13) Pesch & Sanduleak 1983, Stephenson et al. 1992; (14) Markarian et al. 1983, Markarian & Stepanian 1983, Stepanian 1994; (15) this paper, Salzer et al. 2000a, 2000b.

Blue Compact Dwarf (BCD) galaxies: a mixed bag

Cairos et al. (2001)

- dwarf galaxies (10⁷ \leq L/L $_{\odot}$ \leq 10⁹, M_B > -18 mag; M_T $\sim~10^8$... a few 10^{9 M} $_{\odot}$)
- intense star-forming activity; spatial scale $\simeq 1$ kpc
- evolved low-surface brightness host galaxy in most (>95%) BCDs
- very few BCDs are strongly interacting/merging systems

 $10^7 \le L/L_{\odot} \le 10^9$, M_B > -18 mag; M_T $\sim 10^8$... a few 10^9 M_{\odot}

Spatial distribution of BCDs

FIG. 2.—Heliocentric velocity vs. right ascension wedge diagram for the SBS zone (49° $\leq \delta \leq 61.2°$). Bright CfA galaxies are shown as crosses, SBS BCGs without a bright neighbor within 5 h^{-1} Mpc are shown as filled circles, and SBS BCGs with a bright neighbor within 5 h^{-1} Mpc are shown as open circles.

- BCDs are relatively evenly distributed in space (i.e. contrary to dwarf ellipticals, they are <u>not</u> concentrated in galaxy clusters)
- Typical distance to normal galaxies: \simeq 5 Mpc (e.g. Pustlinik et al. 1995)
- However, about 1/2 of BCDs have a close (100 Kpc) dwarf companion
 - → weakly interacting systems (e.g. Noeske et al. 2001, Pustilnik et al. 2001)

BCDs: spectroscopic properties

narrow emission lines superposed on blue stellar continuum

- metal-poor (gas-phase metallicity $7.0 \le 12 + \log(O/H) \le 8.4$, equivalent to ~1/40 ... 1/2 solar); <Z>~8.0
- low dust content t (typically $A_V \le 0.5$ mag, even in the star-forming component)

BCDs and other emission-line galaxies along the luminosity-metallicity (L-Z) relation

• Estimated fading after the termination of the starburst ~0.75-1.5 B mag

Henize 2-10: $H\alpha$ supershells and large-scale gas outflows

a

a) mechanical luminosity for a Star Formation Rate of 1 M_{\odot} yr⁻¹ as a function of time Luminosity Power at t=10⁷ yr : 4×10⁴¹ erg s⁻¹ (total energy injected into the ISM: 4.5×10⁵⁵ erg)

b) observations: gigantic bipolar outflow of hot and metal-enriched gas from the starburst component, expanding with velocities of ~300 km s⁻¹ into the ambient interstellar medium.

Henize 2-10: extended X-ray emission

X-ray contours (ROSAT HRI) overlaid with a continuum-subtracted $H\alpha$ map.

Hot (10⁷ K) X-ray emitting gas:

- Expansion into the ambient ISM and ejection into the halo (and possibly beyond): galactic winds
- Chemical enrichment of the interstellar and intergalactic medium.

XMM-Newton X-ray spectrum (0.25-6 keV)

BCDs: starburst-driven mass ejection into halo

Super-Star Clusters

Does starburst activity in BCDs lead to galactic winds?

Several semi-analytic models:

de Young & Gallagher (1990), de Young & Heckman (1994), Silich & Tenorio-Tagle (2001)

Chronology of a starburst in a dI/BCD

The BCD classification scheme by Loose & Thuan (1986)

Discovery of a host galaxy underlying the star-forming component

Definition of four main morphological classes (iE, nE, il and i0)

The (spectroscopic) classification scheme by Salzer et al. (1989)

	TABLE 3					
	AVERAGE PHYSICAL PARAMETERS					
ELG Type	$\frac{V_0}{B - V_{\rm corr}} (\rm km \ s^{-1}) \qquad M_B$		M _B	D (kpc)	W(О ш) (Å)	
Seyfert 1	0.71	24778	-21.43	34.7	36.2	
Seyfert 2	0.77	10966	-20.08	21.1	51.3	
Starburst nucleus	0.63	14508	- 20.07	20.1	21.3	
Dwarf amorphous nuclear starburst	0.59	7005	-18.38	9.4	21.0	
Н II hotspot	0.43	10435	-18.43	9.3	193.1	
Dwarf H II hotspot	0.43	5241	-16.56	3.8	238.8	
Sargent-Searle	0.27	2549	-14.08	1.6	1090.5	
Giant irregular	0.48	13425	-19.88	21.9	138.3	
Magellanic irregular	0.40	2677	-16.48	5.9	646.8	
Interacting pair	0.48	8344	-18.42	13.5	82.4	

- Galaxies with a spectrum similar to that of an HII region
- Sample: mainly the University of Michigan (UM) survey
- BCDs \in HII galaxies of type DANS, HIIH, DHIIH and SS

FIG. 9.—Physical parameters for the H II hotspot, dwarf H II hotspot, and Sargent-Searle galaxies. The two diagrams show the distributions of (a) absolute magnitudes and (b) diameters.

Salzer et al. (1989)

The BCD vs. HII classification scheme

The gas content of BCDs

Gas (hydrogen+helium) contributes between 40% and 95% of the mass of BCDs
 ■ Ratio between (virial) mass and B band luminosity in BCDs M_T/L_B=2.3 (½ of that for dIs)
 ■ → BCDs could have not sustained their current SFR over the Hubble time (otherwise they would have consumed their gas reservoir)

Gas fraction as a function of absolute magnitude

typically M(HI+He)/M(*+gas) > 0.4

BCDs: HI distribution and kinematics

M_T/L_B(R_{Ho}) = 2-6
 HI extent R_{HI} / optical Holmberg radius R_{Ho}: R_{HI}/(R_{Ho}) = 3-10
 Dark Matter dominated (unclear whether this is the case within R_{Ho})
 HI gas shows both rotaitonal and turbulent motions

Comparison of the radial HI surface density ($\Sigma_{\rm HI}$) distribution in BCDs and dIs

Optical Radius

BCDs are more compact than dls with respect to their HI distribution

 $\Sigma_{\rm HI}({\rm BCDs}) \sim 5 \times \Sigma_{\rm HI}({\rm dIs})$

BCDs: molecular hydrogen content and distribution

Problem: the H_2 gas can not be directly studied at mm wavelengths.

Solution: observations of the CO molecule (mainly at 2.6 mm) and convertion of the the CO luminosity into H₂ mass.

But: a) the χ factor ¹²CO/H₂ depends i.a. on particle density and temperature

b) as BCDs are metal-poor, they are deficient in C+O

c) in the presence of intense UV radiation field, molecules are destroyed \blacksquare H₂ mass: typically (1...7) \times 10⁶ M_{\odot} (\equiv a few % of the HI mass)

BCDs: molecular hydrogen content and distribution

The horseshoe CO distribution in the BCD Mrk 86 Gil de Paz et al. (2002)

Summary I

- dwarf galaxies: the most common class of extragalactic objects in the Universe
- 3 main types of dwarf galaxies: dwarf ellipticals, dwarf irregulars and Blue Compact Dwarfs (BCDs)
- BCDs undergo intense star-forming activity (starbursts)
- ... are not strongly clustered & a few of them in strong gravitational interaction with other gal.
- ... gas-rich and metal-poor. They span a wide range in their gas-phase metallicity
- Typical diameter of the starburst component in a BCD: 1 kpc.
- Formation of hundreds of Young Stellar Clusters or even (a few) Super-Star Clusters
- Cyclic starburst phenomenon in BCDs:
 - Explanation: Tremendous energetic output through stellar winds and SNe \rightarrow generation of a hot X-ray gas phase \rightarrow galactic winds \rightarrow termination of the starburst
- Two classification schemes for BCD/HII galaxies (morphological & spectroscopic)
- Spectral synthesis models aiming at understanding the Star Formation History of BCDs
 - a) evolutionary synthesis (different approaches, e.g. spectrophotometric, closed-box, chemodynamical)
 - b) population synthesis