Blue Compact Dwarf Galaxies

a had a had a had a had a had a

the a the

Polychronis Papaderos Centro de Astrofísica da Universidade do Porto

UCM – 7. May 2010

Centro de Astrofísica da Universidade do Porto the the

the the

BCDs: Star Formation Rate (SFR)

SFR indicators: H α , UV and radio continuum luminosity

 \blacksquare Derived SFRs between 0.05 and 0.5 $M_{\odot}/year$

A cautionary note: the SFR calibration is based on the assumption that star formation is continuous and at constant rate over \geq 100 Myr ... but

BCDs: Burst parameter **b** and Star Formation History (SFH)

Different models (after Tinsley 1968), incl. Krüger et al. (1991,1995), Guseva et al. (2001,2004), Mas-Hesse & Kunth 1999, Westera et al. 2004, Zackrisson et al. 2008 etc.) with emphasis on various observables, such as e.g. integral colors and/or the SED slope, equivalent widths of Balmer absorption lines, 4000 Å break, H+K(Ca) index

Problem: uniqueness of the best-fitting solution.

Evolutionary Synthesis models of the integral colors of BCDs

burst parameter

b(%) = mass of the stars formed in the current burst / mass of the stars ever formed

- Method: photometric evolutionary synthesis models (reproducing the integral colors U-B, B-V, V-R etc.)
 Basic assumption: old (10 Gyr) stellar host + recent burst
- b parameter in the range between 0.1% and 5%
- Comparable b values derived from chemical evolutionary synthesis models (e.g. Recchi et al. 2001) and optical-UV evolutionary spectral synthesis models (Mas-Hesse & Kunth 1999).

Evolutionary Synthesis models of the integral colors, SED slope, equivalent widths of Balmer absorption lines + intrinsic extinction

Search for a SFH which approximates the observed equivalent widths of both Ha+Hb (in emission) and Hg+Hd (in absorption), in addition to the SED slope and colors. Self-consistent determination of intrinsic extinction

- EWs **do not depend** on intrinsic extinction
- The slope and colors of the SED **depends** on extinction

Evolutionary Synthesis models of the integral colors, SED slope, equivalent widths of Balmer absorption lines + intrinsic extinction

Guseva et al. (2001)

BCDs: Burst parameter **b** and Star Formation History (SFH)

population synthesis: decomposition of the observed SED in a set of Single Stellar Populations (SSPs) with different ages and metallicities

- a) no assumption about the SFH
- b) for example, input SSP library with 3 metallicities imes 50 ages
- Output: t- and z-distribution of SSPs & intrinsic extinction, luminosity-weighted and mass-weighted stellar age and metallicity, burst parameter b.

Example:

Asari et al. (2007) for SDSS galaxies, based on *Starlight* (Cid Fernandez et al. 2004)

Warning: spectral synthesis will not work for galaxies with strong ionized gas emission

The photometric structure of BCDs

BCDs: photometric structure I

Mrk 178

 A single fitting law (e.g. Sersic) cannot fit the surface brightness profiles (SBPs) of BCDs
 SBP decomposition in (at least) two components: old host galaxy and young star-forming component
 Large colour gradients within the star-forming component (R* ≤ P₂₅) are typical for BCDs

Papaderos et al. (2002)

exp. scale length, formation history, color+age gradients, kinematics ..)

Profile decomposition

 $\mu_{E,0}$: Central surface brightness of the LSB host α : exponential scale length

BCDs: photometric structure II

Loose & Thuan (1986ab), James (1993), Papaderos et al. (1996ab), Telles et al. (2007), Cairos et al. (2001a,b, 2003), Noeske et al. (2000,2003,2005), Bergvall & Östlin (2002), Gil de Paz et al. (2003,2005), Lee et al. (2004), Gil de Paz & Madore (2005), Vaduvescu et al. (2005), Caon et al. (2005), Makarova et al. (2009), Amorin et al. (2007,2009), Sung et al. (2008), Micheva et al. (2009)

Surface photometry: down to $\mu \simeq 26.5$ B mag arcsec⁻²

Color contrast between the **old** host galaxy and **young** star-forming component (Δ (B-R) of up to 1 mag) with radial color gradients of up to 2 (B-R) mag kpc⁻¹

BCD host galaxy can be approximated in its outer part by an exponential fitting law over 3-5 exponential scale lengths α.
 Alternatively, or in addition: Sersic law with a shape parameter η≈1 (Noeske et al. 2003, Cairos et al. 2003, Caon et al. 2005), modified exponential distribution (Papaderos et al. 1996), hyperbolic secant distribution (Vaduvescu et al. 2005),

Spatial extent of the star-forming component

Radius of the star-forming component R_{SF} (P96) : $R_{SF} \simeq 2\alpha_{host}$

■ A starburst requires a minimum stellar density of $\rho_* \ge 1$ M_☉ pc⁻³ in the host galaxy, i.e. compact underlying host galaxy (P96, Noeske et al. 2003, Gil de Paz & Madore 2005)

Star forming activities in BCDs are (partly) regulated by the gravitational potential of the stellar LSB host →
 <u>9 does Dark Matter dominate within the Holmberg radius of BCDs?</u>

Evolutionary connections between BCDs and dls

time

why starburst?

- **gas consumption timescale (** $\simeq M_{gas}$ /SFR)
- timescale for gas cooling & replenishment
- evolutionary & population synthesis models
- ratio BCDs/dls ~ 1/28

Thuan et al. (1991) Krüger et al. (1994) Mas-Hesse & Kunth (1999) Sanchez-Almeida et al. (2008)

Working hypothesis: if BCDs and dls represent one and the same type of dwarf galaxy seen, respectively, in an active (starburst) and quiescent (inter-burst) phase, then BCDs and dls must be indistinguishable from one another in the structural properties ($\mu_{E,0}$ and α at a given M_B) of their host galaxy.

Dwarf irregular + Starburst = Blue Compact Dwarf

- at equal absolute B magnitude, the host galaxy of a BCD is on average more compact than a dI (or a dE).
 (Papaderos et al. 1996, Gil de Paz & Madore 2005)
- $\Delta \mu_{\rm E,0} \geq 2$ mag and $\alpha_{\rm BCD}/\alpha_{\rm dl} \leq 0.5$
- → The central stellar density of the host galaxy of the BCD host is ≥10 higher than that in dls.
- **BCDs** have a $\geq 5 \Sigma_{HI}$ than dls (Wednesday, May 5th)
- Revision of the "standard" dI↔BCD evolutionary scenario for dwarf galaxies?

Hypotheses

a) bimodal dwarf galaxy distribution (🙁)

■ b) dynamical (structural) dl↔BCD evolution due to gas infall prior to the starburst and subsequent gas ejection during/after the starburst.

Possible only if Dark Matter **does not** dominate the mass within the Holmberg radius (P96).

dark-to-luminous mass ratio $\psi(R_{Ho}^{i}) = M_{DM} / M_{L} < 1$

$$\frac{R^{\rm f}}{R^{\rm i}} = \frac{M^{\rm i}}{M^{\rm f}} = (1 + \mathscr{F})^{-1}$$

Hills (1980)
$$\mu_{\rm E,0}^{\rm f} = \mu_{\rm E,0}^{\rm i} + 5 \log\left(\frac{\alpha^{\rm f}}{\alpha^{\rm i}}\right) = \mu_{\rm E,0}^{\rm i} - 5 \log\left(\frac{M^{\rm f}}{M^{\rm i}}\right)$$

Conversely, if (ψ <1) then the reverse scenario is also feasible, i.e. gas infall from the halo can lead to an

adiabatic contraction

of the stellar host galaxy, possibly moving a dl into the parameter space typically occupied by BCDs.

Therefore when starburst activity is initiated (BCD phase) both <u>gas and stars</u> are much more centrally concentrated than during the quiescent interburst phase (dI phase).

Adiabatic contraciton & expansion of the host galaxy

For
$$\begin{split} \xi &= 1 + \frac{\mathcal{F}_0}{1 + \psi_{R_{\text{Ho}}}^{\text{i}}} \\ \Delta \mu_{\text{E},0} &= -5 \, \log(\xi) \quad \text{and} \quad \frac{\alpha^{\text{f}}}{\alpha^{\text{i}}} = \xi^{-1} \end{split}$$

Variation of the central surface brightness $\Delta \mu_{E,0} = \mu_{E,0}^{f} - \mu_{E,0}^{i}$ and the exponential scale length α^{f}/α^{i} of the underlying stellar LSB component as a function of the fractional luminous mass $\mathcal{F}_{0} = (\Delta M_{Gas}/M_{L}^{i})$ removed from or accreted onto it, for initial dark-to-luminous mass ratios $\psi^{i} = M_{DM}/M_{L}^{i}$ equal to 0, 0.5, 2.0 and ∞ .

> with $F_0 = \Delta M_{gas}/M_L$ gas ejection: $F_0 < 0$ gas infall : $F_0 > 0$

 $M_L = M * + M_{gas}$

dark-to-luminous mass ratio $\psi(R_{H_0}^i) = M_{DM} / M_L$

Summary

The evolutionary links between BCDs and dIs are not yet understood.

Critical observational test: determination of

 $\psi(Ri_{Ho})$ and its time evolution

In >95% of the BCD population in the local universe starburst activity takes place within an <u>old regular</u> host galaxy

There are very few exceptions!

Extremely metal-deficient BCDs: XBCDs Young galaxy candidates in the nearby Universe?

Papaderos et al. (2002)

Guseva, Papaderos, Izotov et al. (2004)

- no evidence for a dominant old stellar population
- irregular morphology and intense star-forming activity
- extremely metal-deficient $(Z_{\odot}/43 \le Z \le Z_{\odot}/3)$

extremely rare (1% of the BCDpopulation; only 15 XBCDs discovered by the end of the last millenium)

Thuan et al. (1997), Papaderos et al. (1998)

Fricke et al. (2001)

Papaderos et al. (1999,2007)

Evolutionary status

~10 XBCDs studied in some detail with surface photometry and evolutionary synthesis models

- ➡ ∃ stellar host galaxy with a Holmberg diameter of few 100 pc
 → do not currently form their first stellar generation
 ➡ However contrary to normal BCDs the colors of the host galaxy (in regions with weak nebular emission, or after subtraction of nebular emission) are very blue
 (V-I=0.1 ... 0.5 mag)
 ➡ for standard SEHs (exp. SEP with an e folding time of 1.3 Cvr)
- for standard SFHs (exp. SFR with an e-folding time of 1-3 Gyr) such colors imply that ½ of the stellar mass has formed during the last 0.5 – 4 Gyrs

 $\blacksquare \rightarrow$ several XBCDs are **cosmologically young** objects

Why to study XBCDs?

Star formation and feedback processes under chemical conditions similar to those in high-redshift protogalaxies

- properties of massive low-metallicity stars
- cooling efficiency of the hot, X-ray emitting plasma

Dynamical build-up and early chemical and spectrophotometric evolution of low-mass galaxies

- dynamical processes (e.g. monolithic collapse, inside-out, SF propagation, merging of smaller units?)
- observational constraints to numerical simulations of dwarf galaxy formation

The pair of XBCDs SBS 0335-052 E&W

Pustilnik et al. (2001)

SBS 0335-052: HI cloud with a projected size of 70×20 kpc; mass of ${\sim}10^9~\text{M}_{\odot}$

SBS 0335-052: formation

- Study of the V-I color and spatial distribution of stellar clusters using HST data
- galaxy is forming in a propagating mode from northwest to southeast with a mean velocity of ~20 km/s.

HST/WFPC2, V band

HST/WFPC2, I band, unsharp masked

... other examples of XBCD formation through propagation

SBS 1415+437 Tol 1214-277

Guseva et al. (2003)

Fricke et al. (2001)

Morphology of XBCDs

Ionized gas emission in XBCDs

Guseva et al. (2004)

 Several XBCDs show intense nebular emission (EW > 1000 Å), 0.1-1 kpc away from their SF regions
 Typical signatures: very blue (-0.5 .. -1 mag) V-I and R-I and moderately red (0.4 ... 0.6) B-R and V-R colors

Corrections for ionized gas emission are necessary for age-dating of stellar populations using colors and/or color magnitude diagrams

I Zw 18 – the prototypical XBCD $(Z=Z_{\odot}/30, D=15 \text{ Mpc})$

21cm VLA map

Optical HST exposure

I Zw 18 – the prototypical XBCD

I Zw 18: a dwarf galaxy surrounded by an extended ionized gas halo

Papaderos et al. (2001)

+ mass & environment

Summary

The number of XBCDs (7.0 \leq 12+log(O/H) \leq 7.6) has dramatically increased in the last decade (~60 XBCDs currently known). Very few XBCDs have been studied in detail so far.

All XBCDs studied have a stellar host galaxy, i.e. none of these systems forms its first stellar generation

■ However, XBCDs are cosmologically young (M*,old/M*,0.5-4 Gyr $\leq \frac{1}{2}$). Studies of XBCDs may yield important insights into the main processes driving dwarf galaxy formation.

IFU spectroscopic studies will permit a major step forward in our understanding of XBCD/BCD evolution. www.observational-cosmology.eu/papaderos

email: papaderos@astro.up.pt