Blue Compact Dwarf Galaxies
Polychronis Papaderos
Centro de Astrofísica da Universidade do Porto
UCM – 7. May 2010
BCDs: Star Formation Rate (SFR)

- SFR indicators: Hα, UV and radio continuum luminosity
- Derived SFRs between 0.05 and 0.5 M☉/year
- A cautionary note: the SFR calibration is based on the assumption that star formation is continuous and at constant rate over ≥100 Myr … but

L(Hα) depends on
- starburst age
- metallicity

Weilbacher & Fritze von Alvensleben (2001)
BCDs: Burst parameter b and Star Formation History (SFH)

- **evolutionary synthesis**: a SFH is assumed.
- **old** + **young** stellar population with e.g.
 - **old**: constant or exponentially decreasing SFR with varying e-folding τ
 - **young**: constant SFR over 5.e+6 ... 1.e+8 yr, starting at t_0 ($t_0<0.1$ Gyr)

Output: synthetic spectral energy distribution (SED) and colors \rightarrow comparison with observations \rightarrow variation of the initial SFH \rightarrow match between synthetic and observed SED.

Different models (after Tinsley 1968), incl. Krüger et al. (1991,1995), Guseva et al. (2001,2004), Mas-Hesse & Kunth 1999, Westera et al. 2004, Zackrisson et al. 2008 etc.) with emphasis on various observables, such as e.g. integral colors and/or the SED slope, equivalent widths of Balmer absorption lines, 4000 Å break, H+K(Ca) index

Problem: uniqueness of the best-fitting solution.
Evolutionary Synthesis models of the integral colors of BCDs

- burst parameter

\[b(\%) = \frac{\text{mass of the stars formed in the current burst}}{\text{mass of the stars ever formed}} \]

- Method: photometric evolutionary synthesis models (reproducing the integral colors $U-B$, $B-V$, $V-R$ etc.)
- Basic assumption: old (10 Gyr) stellar host + recent burst
- b parameter in the range between 0.1\% and 5\%
- Comparable b values derived from chemical evolutionary synthesis models (e.g. Recchi et al. 2001) and optical-UV evolutionary spectral synthesis models (Mas-Hesse & Kunth 1999).

„Loops“ on two-color diagrams with an amplitude proportional to the burst parameter b (in addition, to e.g. the Initial Mass Function)
Evolutionary Synthesis models of the integral colors, SED slope, equivalent widths of Balmer absorption lines + intrinsic extinction

Search for a SFH which approximates the observed equivalent widths of both Ha+Hb (in emission) and Hg+Hd (in absorption), in addition to the SED slope and colors.

Self-consistent determination of intrinsic extinction

- EWs do not depend on intrinsic extinction
- The slope and colors of the SED depends on extinction
Evolutionary Synthesis models of the integral colors, SED slope, equivalent widths of Balmer absorption lines + intrinsic extinction

Guseva et al. (2001)

Westera et al. (2004)
BCDs: Burst parameter b and Star Formation History (SFH)

- population synthesis: decomposition of the observed SED in a set of Single Stellar Populations (SSPs) with different ages and metallicities
 - a) no assumption about the SFH
 - b) for example, input SSP library with 3 metallicities \times 50 ages

- **Output:** t- and z-distribution of SSPs & intrinsic extinction, luminosity-weighted and mass-weighted stellar age and metallicity, burst parameter b.

- **Example:**
 Asari et al. (2007) for SDSS galaxies, based on *Starlight* (Cid Fernandez et al. 2004)

- **Warning:** spectral synthesis will not work for galaxies with strong ionized gas emission
The photometric structure of BCDs
A single fitting law (e.g. Sersic) cannot fit the surface brightness profiles (SBPs) of BCDs. SBP decomposition in (at least) two components: old host galaxy and young star-forming component. Large colour gradients within the star-forming component ($R^* \leq P_{25}$) are typical for BCDs.

Papaderos et al. (2002)
Optical structure of BCDs - Parameters

Starburst component: radial extend, luminosity & mass contribution, SF history, mass fraction of young compact clusters

Host galaxy: structural properties (e.g. profile slope, exp. scale length, formation history, color+age gradients, kinematics ..)

Profile decomposition

Gaussian component (G)

\[I_G = I_{G,0} \exp \left[-0.5 \left(\frac{R^*}{\gamma} \right)^2 \right] \]

"Plateau" component (P)

\[I_P = I_{P,0} \exp \left[-\left(\frac{R^*}{\beta} \right)^\eta \right] \]

Low-surface brightness (LSB) host galaxy (E)

\[I_E = I_{E,0} \exp \left[-\left(\frac{R^*}{\alpha} \right) \right] \]

\[\mu \equiv -2.5 \log I_E + \text{constant} = \mu_{E,0} + 1.086 \left(\frac{R^*}{\alpha} \right) \]

\[\mu_{E,0} \text{: Central surface brightness of the LSB host} \]

\[\alpha \text{ : exponential scale length} \]
BCDs: photometric structure II

Loose & Thuan (1986ab), James (1993), Papaderos et al. (1996ab), Telles et al. (2007), Cairo et al. (2001a,b, 2003), Noeske et al. (2000,2003,2005), Bergvall & Östlin (2002), Gil de Paz et al. (2003,2005), Lee et al. (2004), Gil de Paz & Madore (2005), Vaduvescu et al. (2005), Caon et al. (2005), Makarova et al. (2009), Amorin et al. (2007,2009), Sung et al. (2008), Micheva et al. (2009).

- Surface photometry: down to $\mu \approx 26.5$ B mag arcsec$^{-2}$

- Color contrast between the **old** host galaxy and **young** star-forming component ($\Delta(B-R)$ of up to 1 mag) with radial color gradients of up to 2 (B-R) mag kpc$^{-1}$

- BCD host galaxy can be approximated in its outer part by an exponential fitting law over 3-5 exponential scale lengths α.
 Alternatively, or in addition: Sersic law with a shape parameter $\eta \approx 1$ (Noeske et al. 2003, Cairo et al. 2003, Caon et al. 2005), modified exponential distribution (Papaderos et al. 1996), hyperbolic secant distribution (Vaduvescu et al. 2005).
Spatial extent of the star-forming component

- Radius of the star-forming component R_{SF} (P96): $R_{\text{SF}} \approx 2\alpha_{\text{host}}$

- A starburst requires a minimum stellar density of $\rho_\star \geq 1 \ M_\odot \ pc^{-3}$ in the host galaxy, i.e. compact underlying host galaxy (P96, Noeske et al. 2003, Gil de Paz & Madore 2005)

- Degree of concentration of star forming activities \propto mass of the host galaxy \rightarrow mass-morphology relation for BCDs

Star forming activities in BCDs are (partly) regulated by the gravitational potential of the stellar LSB host \rightarrow

$\ ?$ does Dark Matter dominate within the Holmberg radius of BCDs?
Evolutionary connections between BCDs and dls
Evolutionary links between BCDs and dls (?)

The “standard” dl↔BCD evolutionary scenario

why starburst?
- gas consumption timescale ($\approx M_{\text{gas}}/\text{SFR}$)
- timescale for gas cooling & replenishment
- evolutionary & population synthesis models
- ratio $\text{BCDs/dls} \approx 1/28$

Thuan et al. (1991)
Krüger et al. (1994)
Mas-Hesse & Kunth (1999)
Sanchez-Almeida et al. (2008)
Working hypothesis: if BCDs and dls represent one and the same type of dwarf galaxy seen, respectively, in an active (starburst) and quiescent (inter-burst) phase, then BCDs and dls must be indistinguishable from one another in the structural properties ($\mu_{E,0}$ and α at a given M_B) of their host galaxy.

Dwarf irregular + Starburst = Blue Compact Dwarf
at equal absolute B magnitude, the host galaxy of a BCD is on average more compact than a dI (or a dE).
(Papaderos et al. 1996, Gil de Paz & Madore 2005)

$\Delta \mu_{E,0} \geq 2$ mag and $\alpha_{BCD} / \alpha_{dI} \leq 0.5$

\rightarrow The central stellar density of the host galaxy of the BCD host is ≥ 10 higher than that in dIs.

BCDs have a $\geq 5 \Sigma_{HI}$ than dIs (Wednesday, May 5th)

Revision of the “standard” dI\leftrightarrowBCD evolutionary scenario for dwarf galaxies?
Evolutionary links between BCDs and dIs (?)

- a) bimodal dwarf galaxy distribution (☹)

- b) dynamical (structural) dI↔BCD evolution due to gas infall prior to the starburst and subsequent gas ejection during/after the starburst.

Possible only if Dark Matter does not dominate the mass within the Holmberg radius (P96).

dark-to-luminous mass ratio

$$\psi(R_{i_H0}) = \frac{M_{DM}}{M_L} < 1$$
Evolutionary links between BCDs and dls (?)

\[\frac{R^f}{R^i} = \frac{M^i}{M^f} = (1 + \mathcal{F})^{-1} \]

Hills (1980)

\[\mu^f_{E,0} = \mu^i_{E,0} + 5 \log \left(\frac{\alpha^f}{\alpha^i} \right) = \mu^i_{E,0} - 5 \log \left(\frac{M^f}{M^i} \right) \]

Conversely, if (\(\psi < 1 \)) then the reverse scenario is also feasible, i.e. gas infall from the halo can lead to an adiabatic contraction of the stellar host galaxy, possibly moving a dl into the parameter space typically occupied by BCDs.

Therefore when starburst activity is initiated (BCD phase) both gas and stars are much more centrally concentrated than during the quiescent interburst phase (dl phase).
Adiabatic contraction & expansion of the host galaxy

\[\Delta \mu_{E,0} = \mu_{E,0}^f - \mu_{E,0}^i \]

and

\[\frac{\alpha^f}{\alpha^i} = \xi^{-1} \]

Variation of the central surface brightness
\[\Delta \mu_{E,0} = \mu_{E,0}^f - \mu_{E,0}^i \]

and the exponential scale length \[\frac{\alpha^f}{\alpha^i} \]
of the underlying stellar LSB component as a function of the fractional luminous mass \[F_0 = (\Delta M_{\text{Gas}}/M_L^i) \]
removed from or accreted onto it, for initial dark-to-luminous mass ratios \[\psi^i = M_{DM}/M_L^i \]
equal to 0, 0.5, 2.0 and \(\infty \).

For
\[\xi = 1 + \frac{F_0}{1 + \psi_{R_{H_0}}} \]

\[\Delta \mu_{E,0} = -5 \log(\xi) \]

\[F_0 = \Delta M_{\text{gas}}/M_L \]

gas ejection: \(F_0 < 0 \)

gas infall: \(F_0 > 0 \)

\[M_L = M* + M_{\text{gas}} \]

dark-to-luminous mass ratio
\[\psi(R_{H_0}) = M_{DM} / M_L \]
Summary

The evolutionary links between BCDs and dls are not yet understood.

Critical observational test: determination of

\[\psi(R_{iH_0}) \] and its time evolution
In >95% of the BCD population in the local universe starburst activity takes place within an old regular host galaxy. There are very few exceptions!
Extremely metal-deficient BCDs: XBCDs
Young galaxy candidates in the nearby Universe?

- No evidence for a dominant old stellar population
- Irregular morphology and intense star-forming activity
- Extremely metal-deficient ($Z/43 \leq Z \leq Z/3$)
- Extremely rare (1% of the BCD population; only 15 XBCDs discovered by the end of the last millenium)
Evolutionary status

- ~10 XBCDs studied in some detail with surface photometry and evolutionary synthesis models

 - ∃ stellar host galaxy with a Holmberg diameter of few 100 pc → do not currently form their first stellar generation
 - However – contrary to normal BCDs - the colors of the host galaxy (in regions with weak nebular emission, or after subtraction of nebular emission) are very blue (V-I=0.1 ... 0.5 mag)
 - for standard SFHs (exp. SFR with an e-folding time of 1-3 Gyr) such colors imply that ½ of the stellar mass has formed during the last 0.5 – 4 Gyrs

- → several XBCDs are **cosmologically young** objects
Why to study XBCDs?

Star formation and feedback processes under chemical conditions similar to those in high-redshift protogalaxies

- properties of massive low-metallicity stars
- cooling efficiency of the hot, X-ray emitting plasma

Dynamical build-up and early chemical and spectrophotometric evolution of low-mass galaxies

- dynamical processes (e.g. monolithic collapse, inside-out, SF propagation, merging of smaller units?)
- observational constraints to numerical simulations of dwarf galaxy formation
The pair of XBCDs SBS 0335-052 E&W

SBS 0335-052: HI cloud with a projected size of 70×20 kpc; mass of $\sim 10^9$ M$_\odot$
SBS 0335-052: formation

- Study of the V-I color and spatial distribution of stellar clusters using HST data

- Galaxy is forming in a propagating mode from northwest to southeast with a mean velocity of ~20 km/s.

Papaderos et al. (1998)

HST/WFPC2, V band
HST/WFPC2, I band, unsharp masked
... other examples of XBCD formation through propagation

SBS 1415+437

Tol 1214-277

Guseva et al. (2003)

Fricke et al. (2001)
Most XBCDs are characterized by irregular or cometary morphology (contrary to the main class of more metal-rich, old BCDs).
Ionized gas emission in XBCDs

Several XBCDs show intense nebular emission (EW > 1000 Å), 0.1-1 kpc away from their SF regions.

Typical signatures:
very blue (-0.5 .. -1 mag) V-I and R-I and
moderately red (0.4 .. 0.6) B-R and V-R colors

Corrections for ionized gas emission are necessary for age-dating of stellar populations using colors and/or color magnitude diagrams.

Guseva et al. (2004)
IZw 18 – the prototypical XBBD (Z=Z⊙/30, D=15 Mpc)

21cm VLA map

Optical HST exposure
I Zw 18 – the prototypical XBCD

Izotov et al. (2001)
I Zw 18: a dwarf galaxy surrounded by an extended ionized gas halo

Papaderos et al. (2001)
Evolutionary Status
($t_{*,1/2}$, mass-weighted stellar age)

- XBCDs
- BCDs

Gas-phase metallicity

Morphology

+ mass & environment
Summary

- The number of XBCDs ($7.0 \leq 12 + \log(O/H) \leq 7.6$) has dramatically increased in the last decade (~60 XBCDs currently known). Very few XBCDs have been studied in detail so far.

- All XBCDs studied have a stellar host galaxy, i.e. none of these systems forms its first stellar generation.

- However, XBCDs are cosmologically young ($M_{\star,\text{old}}/M_{\star,0.5-4\text{Gyr}} \leq \frac{1}{2}$). Studies of XBCDs may yield important insights into the main processes driving dwarf galaxy formation.

- IFU spectroscopic studies will permit a major step forward in our understanding of XBCD/BCD evolution.